Photon upconversion sensitized nanoprobes for sensing and imaging of pH.

نویسندگان

  • Riikka Arppe
  • Tuomas Näreoja
  • Sami Nylund
  • Leena Mattsson
  • Sami Koho
  • Jessica M Rosenholm
  • Tero Soukka
  • Michael Schäferling
چکیده

Acidic pH inside cells indicates cellular dysfunctions such as cancer. Therefore, the development of optical pH sensors for measuring and imaging intracellular pH is a demanding challenge. The available pH-sensitive probes are vulnerable to e.g. photobleaching or autofluorescence background in biological materials. Our approach circumvents these problems due to near infrared excitation and upconversion photoluminescence. We introduce a nanosensor based on upconversion resonance energy transfer (UC-RET) between an upconverting nanoparticle (UCNP) and a fluorogenic pH-dependent dye pHrodo™ Red that was covalently bound to the aminosilane surface of the nanoparticles. The sensitized fluorescence of the pHrodo™ Red dye increases strongly with decreasing pH. By referencing the pH-dependent emission of pHrodo™ Red with the pH-insensitive upconversion photoluminescence of the UCNP, we developed a pH-sensor which exhibits a dynamic range from pH 7.2 to 2.5. The applicability of the introduced pH nanosensor for pH imaging was demonstrated by imaging the two emission wavelengths of the nanoprobe in living HeLa cells with a confocal fluorescence microscope upon 980 nm excitation. This demonstrates that the presented pH-nanoprobe can be used as an intracellular pH-sensor due to the unique features of UCNPs: excitation with deeply penetrating near-infrared light, high photostability, lack of autofluorescence and biocompatibility due to an aminosilane coating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upconversion Luminescence Sensitized pH-Nanoprobes.

Photon upconversion materials, featuring excellent photophysical properties, are promising for bio-medical research due to their low autofluorescence, non-cytotoxicity, low photobleaching and high photostability. Upconversion based pH-nanoprobes are attracting considerable interest due to their superiority over pH-sensitive molecular indicators and metal nanoparticles. Herein, we review the adv...

متن کامل

Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals

Here, novel nanoprobes for combined optical and magnetic resonance (MR) bioimaging are reported. Fluoride (NaYF4) nanocrystals (20–30 nm size) codoped with the rare earth ions Gd and Er/Yb/Eu are synthesized and dispersed in water. An efficient upand downconverted photoluminescence from the rare-earth ions (Er and Yb or Eu) doped into fluoride nanomatrix allows optical imaging modality for the ...

متن کامل

Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties.

In vivo upconversion luminescence (UCL) imaging, exhibiting favorable characteristics such as high photostability, no blinking, sharp emission lines, and long lifetimes, is recognized as the excellent and significant photoluminescence imaging for the future. To develop the imaging system with high visual sensitivity and tissue penetration, the functional molecules with X-ray computed tomography...

متن کامل

Bimodal magnetic resonance imaging-computed tomography nanoprobes: A Review

Bimodal imaging combines two imaging modalities in order to benefit from their advantages and compensate the limitations of each modality. This technique could accurately detect diseases for diagnostic purposes. Nanoparticles simultaneously offer diagnostic data via various imaging modalities owing to their unique properties. Moreover, bimodal nanoprobes could be incorporated into theranostic s...

متن کامل

Gold and Hairpin DNA Functionalization of Upconversion Nanocrystals for Imaging and In Vivo Drug Delivery.

Although multifunctional upconversion imaging probes have recently attracted considerable interest in biomedical research, there are currently few methods for stabilizing these luminescent nanoprobes with oligonucleotides in biological systems. Herein, a method to robustly disperse upconversion nanoprobes in physiological buffers based on rational design and synthesis of nanoconjugates comprisi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 12  شماره 

صفحات  -

تاریخ انتشار 2014